Skip to content ↓

Topic

Research Laboratory of Electronics

Download RSS feed: News Articles / In the Media / Audio

Displaying 46 - 60 of 145 news clips related to this topic.
Show:

WHDH 7

Prof. Yoel Fink speaks with WHDH about his team’s work developing an acoustic fabric that can listen to and record sound, a development inspired by the human ear. "The fabric can be inserted into clothes to monitor heart rate and respiration. It can even help with monitoring unborn babies during pregnancy."

Bloomberg News

Bloomberg News spotlights how MIT researchers have developed a new material that works like a microphone, converting sounds into vibrations and then electrical signals. “The development means the possibility of clothes that act as hearing aids, clothes that answer phone calls, and garments that track heart and breathing rates,” writes Bloomberg News.

Popular Science

Researchers from MIT and the Rhode Island School of Design have developed a wearable fabric microphone that can detect and transmit soundwaves and convert them into electrical signals, reports Shi En Kim for Popular Science. “Computers are going to really become fabrics," says Prof. Yoel Fink. "We’re getting very close.”

The Daily Beast

MIT researchers have created a flexible fiber that can generate electrical impulses that are conveyed to the brain as sound, reports Miriam Fauzia for The Daily Beast. “The researchers see endless possibilities for their smart fabric,” writes Fauzia. “The obvious application is in improving hearing aids, which Fink said have trouble discerning the direction of sound, particularly in noisy environments. But the fabric could also help engineers design wearable fabrics that can measure vital signs, monitor space dust in new kinds of spacecraft, and listen for signs of deterioration in buildings like emerging cracks and strains.”

Bloomberg

Prof. Jesús del Alamo speaks with Bloomberg Radio’s Janet Wu about a new report by MIT researchers that explores how the U.S. can regain leadership in semiconductor manufacturing and production. “Leadership in microelectronics is really critical for economic progress and also security concerns,” says del Alamo.

CNET

A new white paper by MIT researchers underscores the importance of regaining the U.S.’s innovation leadership in the area of semiconductor manufacturing and calls for increased investment at the research level to help advance this field, reports Stephen Shankland for CNET. "The hollowing out of semiconductor manufacturing in the US is compromising our ability to innovate in this space and puts at risk our command of the next technological revolution,” write the report’s authors. “To ensure long-term leadership, leading-edge semiconductor manufacturing in the US must be prioritized and universities activities have to get closer to it."

NBC Boston

Prof. Muriel Médard speaks with NBC Boston reporter Raul Martinez about 5G technologies and helps demystify the concerns surrounding 5G networks and airline safety.

Popular Science

Popular Science reporter Rahul Rao writes that researchers from MIT and Harvard have whipped up quantum tornadoes, “the latest demonstration of quantum mechanics—the strange code of laws that governs the universe at its finest, subatomic scales.”

Smithsonian Magazine

Researchers from MIT and Harvard have directly observed a quantum tornado, reports Elizabeth Gamillo for Smithsonian. “Scientists observed the tornado-like behavior after trapping and spinning a cloud of one million sodium atoms using lasers and electromagnets at 100 rotations per second,” writes Gamillo.

CNBC

Ubiquitous Energy, an MIT startup, is developing technology to transform windows into surfaces that capture solar energy, reports Catherine Clifford for CNBC. “Ubiquitous makes a coating for windows that uses semiconducting materials to convert sunlight into electricity,” writes Clifford. “The coating is just nanometers thick and tiny wires connect the solar window to electrical systems where the energy is used.”

Mashable

MIT researchers have developed a new technique for producing low-voltage, power-dense actuators that can propel flying microrobots, reports Danica D'Souza for Mashable. “The new technique lets them make soft actuators that can carry 80 percent more payload,” D’Souza reports. 

Physics World

A number of MIT researchers were named as top ten finalists for the Physics World 2021 Breakthrough of the Year. Prof. Wolfgang Ketterle and his colleagues were honored for their work in “independently observing Pauli blocking in ultracold gases of fermionic atoms” and astronomers with the Event Horizon Telescope Collaboration were honored for “creating the first image showing the polarization of light in the region surrounding a supermassive black hole.” 

Science News

Scientists from MIT have observed a quantum effect that blocks ultracold atoms from scattering light, reports Emily Conover for Science News. To observe the effect, the researchers “beamed light through a cloud of lithium atoms, measuring the amount of light it scattered,” writes Conover. “Then, the team decreased the temperature to make the atoms fill up the lowest energy states, suppressing the scattering of light.”

New Scientist

A new study by MIT scientists has uncovered evidence of Pauli blocking, confirming that as atoms are chilled and squeezed to extremes their ability to scatter light is suppressed, reports Leah Crane for New Scientist. “This is a very basic phenomenon, but it’s sort of a devil to see,” explains former MIT postdoc Yair Margalit. “You need these extreme conditions to be able to see it – high densities and ultra-low temperatures – and it is difficult to get both of these at once.”

Inside Science

MIT researchers are developing an electronic skin that can withstand sweating, reports Karen Kwon for Inside Science. The researchers “punched holes on the e-skin to match the size of sweat pores and the distance between them. Then, inspired by kirigami, the team cut away even more material between two holes in an alternating pattern,” writes Kwon. The resulting pattern “could tolerate bending and stretching more than the conventional e-skin with simple holes.”