Skip to content ↓

Topic

Medicine

Download RSS feed: News Articles / In the Media / Audio

Displaying 136 - 150 of 581 news clips related to this topic.
Show:

Wired

Research from Synlogic, a biotech company founded by Profs James Collins and Timothy Lu, has found that it’s the company’s engineered bacteria could provide some benefit to patients with a rare genetic disease, reports Emily Mullin for Wired. “Similar to how you might program a computer, we can tinker with the DNA of bacteria and have them do things like produce a drug at the right time and the right place, or in this case, break down a toxic metabolite,” says Lu.

Associated Press

Principal research scientist Leo Anthony Celi speaks with Associated Press reporter Maddie Burakoff about how pulse oximeters can provide inaccurate readings in patients of color. Celi highlights how oxygen levels can also be measured by drawing blood out of an artery in the wrist, the “gold standard” for accuracy, but a method that is a a bit trickier and more painful. 

Fortune

Jamie Karraker BS ’12 MS ’13 co-founded Alto Pharmacy – a full-service, online pharmacy that aims to create a transparent, straightforward and user-friendly experience, reports Erika Fry for Fortune. “All patients need to do after seeing their doctor is interface with the app (or via text) and pick up the prescription from their front door,” writes Fry.

Boston Business Journal

Landmark Bio, a cell and gene therapy manufacturing company co-founded by MIT and a number of other institutions, is focused on accelerating access to innovative therapies for patients, reports Rowan Walrath for Boston Business Journal. "Landmark's new facility includes laboratory space for research and early-stage drug development, as well as analytics tools,” writes Walrath. 

The Boston Globe

MIT and a number of other local institutions have launched Landmark Bio, a cell and gene therapy manufacturing firm aimed at helping small startups develop experimental therapies that are reliable, consistent, and large enough to be used in clinical trials, reports Ryan Cross for The Boston Globe.

TechCrunch

Researchers at MIT are working on a system that can track the development of Parkinson’s disease by monitoring a person’s gait speed, reports Kyle Wiggers and Devin Coldewey for TechCrunch. “The MIT Parkinson’s-tracking effort aims to help clinicians overcome challenges in treating the estimated 10 million people afflicted by the disease globally,” writes Wiggers and Coldewey.

Boston.com

Researchers from MIT and Harvard Medical School are investigating how exercise and high-fat diets can alter cells, genes and cellular pathways, reports Abby Patkin for Boston.com. “Their research could eventually help develop drugs that would mimic the effects of exercise and combat obesity,” explains Patkin.

WCVB

Researchers from MIT and Harvard Medical School have conducted a study to see how exercise and high-fat diets can impact cells, reports WCVB. The researchers “say the data could eventually be used to develop drugs that could help enhance or mimic the benefits of exercise,” writes WCVB.

NBC Boston

A new study by researchers from MIT and Harvard Medical School has helped identify the impact of exercise and high-fat diets on cells, reports Darren Botelho for NBC Boston 10. “Years from now, those researchers say the data could lead to a pill that would help not only with weight loss, but with the overall effect from exercise – a better wellbeing,” explains Botelho.

Boston 25 News

Prof. Manolis Kellis speaks with Boston 25 about his team’s work exploring the underlying mechanisms exploring how exercise influences weight loss, findings that could offer potential targets for drugs that could help to enhance or mimic the benefits of exercise. “Such an intervention would be a complete game changer and the reason for that is that the obesity epidemic has led to the U.S. having a decreased life span compared to all other developed countries,” says Kellis.

Smithsonian Magazine

MIT researchers have created a robotic pill that can safely penetrate the mucus barrier in the digestive tract to deliver drugs more efficiently, reports Margaret Osborne for Smithsonian Magazine. “The device’s textured surface clears away the mucus, and the rotating motion erodes the compartment with the drug payload, which slowly releases into the digestive tract,” explains Osborne.

New York Times

Prof. Richard Hynes is one of the winners of this year’s Lasker Award, reports Benjamin Mueller for The New York Times, for his work describing how “cells bind to their surrounding networks of proteins and other molecules — findings that pointed the way toward treatments for a number of diseases.”

New Scientist

New Scientist reporter Alex Wilkins writes that MIT researchers have developed a robotic pill that can propel itself through mucus in the intestines and could enable some injection-only medications to be taken orally. “The pill is 2.5-centimeters long and 1-centimeter wide – about the size of a large multivitamin ­– and encased in a gelatin capsule that dissolves in stomach acid,” writes Wilkins. “The pH in the lower intestine activates the motor, which is powered by a small battery.”

Associated Press

Prof. Richard Hynes is one of three honorees for the Albert Lasker Basic Medical Research Award, reports Maddie Burakoff for the AP. Hynes and his fellow awardees “helped launch the field of integrin research, which has since led to new strategies for treating diseases,” writes Burakoff.

The Boston Globe

Prof. Richard Hynes is one of the three recipients of the 2022 Albert Lasker Basic Medical Research Award for his contributions to the field of integrin research, reports Martin Finucane for The Boston Globe. Hynes and his colleagues “provided a greater understanding of the diseases that can result when integrin function is perturbed.”