Skip to content ↓

Topic

Magnets

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 17 news clips related to this topic.
Show:

The Boston Globe

MIT researchers have analyzed tiny particles from a distant asteroid and found that a weak magnetic field may have helped form the outer planets in our solar system,  reports Sabrina Lam for The Boston Globe. In the future, the researchers hope to use samples from other celestial bodies to identify magnetic fields in our universe. “An exciting thing that’s probably going to happen in the next few decades,” says Prof. Benjamin Weiss, “is that we’re going to start bringing samples back from comets.”

IEEE Spectrum

Researchers from MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems (CFS) are using high-temperature superconducting tape as a key part of the design for their tokamak reactor, reports Tom Clynes for IEEE Spectrum. The researchers believe that “this novel approach will allow it to build a high-performance tokamak that is much smaller and less expensive than would be possible with previous approaches,” Clynes notes.

Popular Science

Researchers at MIT have developed a soft robot that can be controlled by a weak magnetic field and travel through tiny spaces within the human body, reports Andrew Paul for Popular Science. “Because of their soft materials and relatively simple manipulation, researchers believe such mechanisms could be used in biomedical situations, such as inching through human blood vessels to deliver a drug at a precise location,” explains Paul.

Scientific American

Commonwealth Fusion Systems, MIT’s Plasma Science and Fusion Center and others are working to build SPARC, a prototype device that aims to extract net energy from plasma and generate fusion power, reports Philip Ball for Scientific American. “SPARC will be a midsize tokamak in which the plasma is tightly confined by very intense magnetic fields produced by new high-temperature superconducting magnets developed at MIT and unveiled in 2021.”  

Science

Researchers from MIT and else have documented the destructive power of hand magnets, a technique used for identifying meteorites, reports Zack Savitsky for Science. “When brought within a few centimeters of a rock, the researchers found, the magnets overwrite vestigial fields contained in iron-based minerals such as magnetite and reset them to the higher strength and orientation of the magnet,” writes Savitsky.  

Forbes

Forbes has named Commonwealth Fusion Systems one of the biggest tech innovations and breakthroughs of 2022, reports Bernard Marr. “Commonwealth Fusion Systems is now working with MIT’s Plasma Science and Fusion Center on plans to build a factory that can mass-produce components for the first commercial fusion reactors,” writes Marr.

Popular Mechanics

Researchers from MIT’s Plasma Science and Fusion Center (PSFC) and Commonwealth Fusion Systems (CFS) are working on making commercial nuclear fusion a reality, reports Juandre for Popular Mechanics. “CFS will build [the tokamak] SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education,” says Prof. Dennis G. Whyte, director of the PSFC. 

Financial Times

Financial Times reporter Tom Wilson writes that researchers from MIT and Commonwealth Fusion Systems (CFS) have successfully demonstrated the use of a high-temperature superconductor, which engineers believe can allow for a more compact fusion power plant. “It’s the type of technology innovation that you know shows up every once in a while in a given field,” CFS chief executive, Bob Mumgaard, tells Wilson.

The New Yorker

Researchers at MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems speak with The New Yorker’s Rivka Galchen about the history of fusion research and the recent test of their large high-temperature superconducting electromagnet. “I feel we proved the science. I feel we can make a difference,” says MIT alumna Joy Dunn, head of manufacturing at CFS. “When people ask me, ‘Why fusion? Why not other renewables,’ my thinking is: This is a solution at the scale of the problem.”

The Codcast

Dennis Whyte, director of MIT’s Plasma Science and Fusion Center, and Bob Mumgaard, CEO of Commonwealth Fusion Systems, join Bruce Mohl on CommonWealth Magazine’s podcast, The Codcast, to discuss how their recent successful test of a high-temperature superconducting electromagnet will impact the quest for fusion energy. “With the advent of this new technology, there is nothing stopping us from building that first demonstration, the Kitty Hawk moment of fusion, when you see net energy from a system for the first time on earth,” said Whyte.

Motherboard

Motherboard reporter Matthew Gault spotlights how scientists from MIT and Commonwealth Fusion Systems developed a large high-temperature superconducting magnet that can create a magnetic field of 20 tesla, “a breakthrough that paves the way for carbon-free power.”

WBUR

WBUR’s Bruce Gellerman explores how researchers from MIT and Commonwealth Fusion Systems successfully demonstrated “the world's strongest high-temperature superconducting magnet, putting them a step closer towards a workable fusion reactor.” The advance “provides reason for hope that in the not-too-distant future, we could have an entirely new technology to deploy in the race to transform the global energy system and slow climate change,” says Maria Zuber, MIT’s vice president for research.

Associated Press

Scientists from MIT and Commonwealth Fusion Systems have performed a successful test of the world’s strongest high temperature superconducting magnet, a crucial step in creating net positive energy from a fusion device, reports the Associated Press.

The Boston Globe

Scientists at MIT and Commonwealth Fusion Systems have cleared a major hurdle in their efforts to achieve net energy from fusion, successfully creating a 20 tesla magnetic field using the high-temperature superconducting magnet they developed, reports Hiawatha Bray for The Boston Globe. “This test provides reason for hope that in the not too distant future we could have an entirely new technology to deploy in the race to transform the global energy system and slow climate change,” says Maria Zuber, MIT’s vice president for research.