Skip to content ↓

Topic

Civil and environmental engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 46 - 60 of 278 news clips related to this topic.
Show:

Science

Scientists from MIT and other institutions have uncovered an ingredient called quicklime used in ancient Roman techniques for manufacturing concrete that may have given the material self-healing properties, reports Jacklin Kwan for Science Magazine. When the researchers made their own Roman concrete and tested to see how it handled cracks, “the lime lumps dissolved and recrystallized, effectively filling in the cracks and keeping the concrete strong,” Kwan explains.

Fast Company

Fast Company reporter Adele Peters writes that researchers from MIT and other institutions have found that a technique employed by ancient Romans for manufacturing concrete contains self-healing properties and could be used to help reduce concrete’s global carbon footprint. The ancient concrete method could open the “opportunity to build infrastructure that is self-healing infrastructure,” explains Prof. Admir Masic.

The Guardian

Researchers at MIT and elsewhere have found that using ancient Roman techniques for creating concrete could be used to create buildings with longer lifespans, reports Nicola Davis for The Guardian. “Roman-inspired approaches, based for example on hot mixing, might be a cost-effective way to make our infrastructure last longer through the self-healing mechanisms we illustrate in this study,” says Prof. Admir Masic.

The Hill

Researchers at MIT have found that applying ancient Roman techniques for developing concrete could be used to reduce concrete manufacturing emissions, reports Saul Elbein for The Hill. “Researchers said blocks treated with the method — in which concrete was mixed with reactive quicklime under continuous heat — knit themselves back together within a few weeks after being fractured,” writes Elbein.

US News & World Report

Researchers at MIT have found indoor humidity levels can influence the transmission of Covid-19, reports Dennis Thompson for US News & World Report. “We found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes,” explains Prof. Lydia Bourouiba.

Fortune

MIT researchers have found that relative humidity “may be an important metric in influencing the transmission of Covid-19,” reports Sophie Mellor for Fortune, “Maintaining an indoor relative humidity between 40% and 60% – a Goldilocks climate, not too humid, not too dry – is associated with relatively lower rates of Covid-19 infections and deaths,” writes Mellor.

Wired

Wired reporter Matt Simon spotlights a study by researchers from MIT and other institutions that finds smartphones in cars could be used to track the structural integrity of bridges. The findings “could pave the way (sorry) for a future in which thousands of phones going back and forth across a bridge could collectively measure the span’s health, alerting inspectors to problems before they’re visible to the human eye,” writes Simon.

The Conversation

Researchers from MIT and elsewhere have found that brown carbon – released from burning biomass – could have a larger impact on the Earth’s climate than originally thought, write University of British Columbia student Nealan Gerrebos and University of British Columbia Prof. Alan Bertram for The Conversation. “The results show a warming effect on the climate from brown carbon that is twice that of the previous estimate,” write Gerrebos and Bertram.

Time

A stamp-sized reusable ultrasound sticker developed by researchers in Prof. Xuanhe Zhao’s research group has been named one of the best inventions of 2022 by TIME. “Unlike stretchy existing ultrasound wearables, which sometimes produce distorted images, the new device’s stiff transducer array can record high-resolution video of deep internal organs (e.g. heart, lungs) over a two-day period,” writes Alison Van Houten.

WBUR

Researchers from MIT’s Concrete Sustainability Hub discuss their research showing that increasing the reflectivity of paved surfaces could help lower air temperatures in U.S. cities by an average of 2.5 degrees. “If we reflect more energy back out, it’s the same as emitting less CO2,” says Randolph Kirchain, co-director of the Concrete Sustainability Hub.

Scientific American

Researchers at MIT have developed a silk-based biodegradable substitute for microplastics, reports Ysabelle Kempe for Scientific American. “This type of research is urgent for companies that face tightening regulations on deliberate use of microplastics,” writes Kempe.

Bloomberg

Researchers from MIT and the Amsterdam Institute for Advanced Metropolitan Solutions have been developing an electric autonomous trash boat, reports Sarah Holder for Bloomberg. The boats “could reduce noise, pollution, and congestion, thus improving the quality of Amsterdam’s historic cityscape.”

Wired

Research led by Prof. Michael Howland has found that adjusting the orientation of wind turbines on a farm can reduce the wake effect and boost the total output, reports Maria Perez Ortiz for Wired. “Howland and his team’s algorithm first uses atmospheric physics and operational farm data—such as temperature and wind conditions—to estimate the wakes that turbines are creating and how these are impacting other turbines,” writes Ortiz. 

Forbes

Lynn (Lynja) Davis ’77 speaks with Forbes about how after a 29-year career in engineering she has found online stardom as a content creator, with the cooking videos she creates with her son, Tim, scooping up millions of views. “Now I understand the phrase, ‘if you love what you do, you’ll never work a day in your life,’” says Davis. “I love making these videos with Tim because it’s so creative and collaborative, and it has made us so much closer.”

NPR

Loh Down on Science host Sandra Tsing Loh spotlights Prof. Cathy Wu and graduate student Vindula Jayawardana and their work developing a new method for self-driving vehicles that would help minimize idling at red lights. “In their method, self-driving can be taught to minimize stops at red lights. To make this work, traffic lights and self-driving cars would have sensors. This would let them check in with each other on their surroundings,” says Loh.